Sediment Transport Measurements from the Coastal Ocean Research and Monitoring Program in Onslow Bay, North Carolina

P. Ansley Wren and Lynn A. Leonard Center for Marine Science – University of NC at Wilmington Funded provided by NOAA

COASTAL RELIEF MODEL: FRYING PAN SHOALS REGION OF THE SOUTH ATLANTIC BIGHT

"23 Mile Rock" Side Scan Mosaic

Upper reef hardbottom

Moored instrument package

Fine-grained sand flats

Coarse-grained sands

Instrumentation

- ADCP continuous 5 minute averages
- PCADP and OBS: 1 Hz for 17 min every 2 hours
- Retrieved & Redeployed every 4-6 weeks

Objectives

- Constrain the key forcing mechanisms for sediment transport at one site on the SEUS mid- continental shelf
- Quantify accretion and erosion patterns adjacent to a marine hard-bottom present at this midcontinental shelf location
 Bathymetry for Frying Pan Shoals Region of the SAB

Sediment Mobilization

Four types of "events" have been identified:

 Spring nor'easter events - Moderate southwesterly waves give way to northeasterly waves.

• Late summer nor'easter events - Fair weather conditions precede northeasterly waves.

 $FW \longrightarrow NE$

 Southerly wind events - Northerly winds give way to strong southerly winds.

 $N \longrightarrow S$

Fair weather processes

May 28 - June 2, 2000

Wind Conditions

Near-bottom Flows

May 28 – June 2, 2000

Sediment Mobility May 28 – June 2, 2000

September 5 - 10, 2000

Wind Conditions

Wave Characteristics

Near-bottom Flows

September 5 - 10, 2000

Sediment Mobility September 5 – 10, 2000

November 24 - 27, 2000

Wind Conditions

Wave Characteristics

Near-bottom Flows

November 24 - 27, 2000

Sediment Mobility November 24 - 27, 2000

Fair weather-No wind

Spring Nor'easter SE → N

Southerly Wind Event $N \rightarrow S$

Late Summer Nor'easter FW → NE Forcing Mechanisms

- Waves (< 1.0m)
 Bottom Current ~10 cm s⁻¹ Tidal
- Waves (> 2.0m)
 Bottom Current 24 hr lag ~10 cm s⁻¹ Subtidal
- Waves (> 4.0m)
- Bottom Current
 < 10 cm s⁻¹
 Tidal

s Sediment Response

None

- Suspended Seds: low
- Small net change

- Suspended Seds: high
- Net accretion

- Waves (> 2.5 m)
 Bottom Current
 > 25 cm s⁻¹
 Subtidal
- Suspended Seds: high
- Net erosion

.....But, significant changes in sea floor elevation were observed during periods of fair weather.....

May 12 – June 26, 2000

Date

Summary

CONCLUSIONS

• Although surface waves and currents respond rapidly to local storm winds, sediment transport processes depend strongly on wind duration and pre-storm conditions.

• Subtidal flows are a key physical forcing mechanism of sediment transport at this site