Characterization of CDOM in an Organic Rich River and Surrounding Coastal Ocean

Cast of Characters

Brooks Avery
Mike Durako
Bob Kieber
Piotr Kowalczuk
Steve Skrabal
Rob Whitehead
Joan Willey

 Wade Sheldon kindly provided software for the 3-D spectra analysis

• NOAA through the:

 Coastal Ocean Research and Monitoring Project at UNCW

• Overall Goal:

- To characterize and compare coastal embayments with low terrestrial input
- To those
- Estuarine-riverine dominated continental shelf ecosystems

• Where:

Onslow Bay

• To

• Cape Fear River and Long Bay

Coastal Ocean Research and Monitoring Program sampling sites

FRYING PAN SHOALS REGION OF THE SOUTH ATLANTIC BIGHT

UNCW/NOAA Coastal Monitoring Program 0 0 OBSB OB05 OB10 Brunswick County 0B15 0B20 OB27 0B32 CFP CFP7 OB37 CFP4 CFP3 **CFP** Stations OB42 **OB** Stations **OB37** OB52 Water **0**0857 Land OB60(G **0**0863 40 80 Miles 40

CDOM Characterization

Absorption coefficient

- Spectrophotometric measurements on Cary 100, in UV-VIS region absorption coefficient $a_y(400)$, CDOM absorption spectrum slope coefficient S

Excitation-Emission Matrix Spectrofluorometry – 3D fluorometry

 SPEX spectrofluorometer – excitation range 250-550 nm, emission range 280-600 nm, results scaled in QSE units (quinine sulfonates equivalent)

CDOM absorption

CDOM absorption characteristics

	$a_y(400) [\mathrm{m}^{-1}]$	<i>S</i> [nm ⁻¹]
Black River	12.7	0.015
Cape Fear River (mean, n=4)	3.46	0.015
Cape Fear River Plume (mean, n=21)	0.71	0.018
Onslow Bay (mean, n=27)	0.088	0.024

CDOM Conservative Mixing?

Cape Fear River Plume 2001

CDOM 3D Fluorescence

- A peak terrestrial humic acids, Ex./Em. 265/460
- 1. C peak terrestrial fulvic acids, Ex./Em. 345/460
- 2. M peak marine fulvic acids, Ex./Em. 312/420
- 3. T peak Protein tryptophan, Ex./Em. 275/330
- Peak Excitation/Emission characteristics may be different for specific locations
- For quantitative analysis we have chosen specific peak integral of 3D fluorescence spectrum
- Coble et al., 1996, Marine Chemistry 51:325-346.

3 D fluorometry end members

Black River - Cbr peak, $\lambda_{ex} = 326 \text{ nm}$, $\lambda_{em} = 426 \text{ nm}$, $a_y(400) = 12.7 \text{ m}^{-1}$, S = 0.0152 nm⁻¹, Salinity = 0 psu

3 D fluorometry end members

Gulfstream, Mgs peak, λ_{ex} = 294 nm, λ_{em} = 404 nm, a_y (400) \approx 0 m⁻¹, S = --, Salinity = 36.3 psu

Relationship between CDOM absorption and fluorescence

Relationship between CDOM absorption and fluorescence

Variables	Equation	Correlation coeff.	Sample size
<i>a_y</i> (400) vs. A peak integral	$A_{peak} = 10^{(4.747 + 0.888X)}$	r = 0.99	<i>n</i> = 47
<i>a_y</i> (400) vs. C peak integral	$C_{peak} = 10^{(4.303 + 0.975X)}$	r = 0.99	<i>n</i> = 47
<i>a_y</i> (400) vs. M peak integral	Mpeak=10 ^(4.364+0.948X)	r = 0.99	<i>n</i> = 47
<i>a_y</i> (400) vs. T peak integral	$T_{peak} = 10^{(4.033 + 0.534X)}$	<i>r</i> = 0.96	<i>n</i> = 47

Relationship between CDOM absorption and fluorescence peak ratios

Relationship between CDOM absorption and fluorescence peak ratios

Variables	Equation	Correlation coeff.	Sample size
$a_y(400)$ vs. A/TOT integral ratio	A/TOT = $0.017 + 0.012*(\log_{10}(a_y(400)))$	<i>r</i> = 0.82	<i>n</i> = 47
$a_y(400)$ vs. C/TOT integral ratio	A/TOT = $0.061 + 0.014*(\log_{10}(a_y(400)))$	<i>r</i> = 0.95	<i>n</i> = 47
<i>a_y</i> (400) vs. M/TOT integral ratio	A/TOT = $0.07 + 0.013*(\log_{10}(a_y(400)))$	<i>r</i> = 0.92	<i>n</i> = 47
<i>a_y</i> (400) vs. T/TOT integral ratio	A/TOT = $0.032 - 0.04*(\log_{10}(a_y(400)))$	r = -0.92	<i>n</i> = 47

Implications

Suggests that:
 Protein is recalcitrant

 Protein is a breakdown product of terrestrial CDOM

– Protein is formed in marine environment

Relationship between CDOM absorption, fluorescence peak-integrals and salinity

Relationship between salinity and fluorescence peak ratios

Implications

Conservative mixing until salinity approaches 35
WHY?

 CDOM is so concentrated that photochemical and biological processes that result in its transformation are masked by the physical mixing process

CDOM absorption and CDOM absorption spectrum slope coefficient

 $y = 0.016 - 0.004 * \log_{10}(a_v(400)), n = 45, r = -0.76$

Conclusions

- 3-D Fluorescence Spectroscopy enables us to study the changes in CDOM composition in the transition environment – terrestrial to marine
- This data will also be used for input to updating SeaWiFS algorithms in waters with high CDOM