Sediment Transport Measurements from the Coastal Ocean Monitoring Program in Onslow Bay, North Carolina

Ansley Wren, Rebecca Beavers, Lynn Leonard, Nancy Grindlay

> Center for Marine Science UNC Wilmington Funding provided by NOAA

STUDY OBJECTIVES

• Quantify sediment transport at a mid continental shelf location adjacent to a marine hardbottom

- Identify physical forcing mechanisms
 - fair weather
 - storms
 - Seasonal variations

• Evaluate impacts of geologic disturbances on benthic communities

Study Rationale

- Few long-term measurements of both physical and geological aspects of the continental shelf (especially on the mid to outer shelf)
- Limited understanding of:
 - how and when sediments are transported across the continental shelf
 - what are the factors (e.g. water column dynamics and sediment mobility) controlling benthic community structure
- Data are critical to the development of:
 - process-oriented, predictive models of sediment transport
 - management strategies for utilization of offshore sand resources and commercial fisheries

- During storms, near bed fluid forces on the mid-continental shelf will mobilize sediments thereby promoting cross-shelf sediment transport, and modifying bed state, bed roughness and substrate granulometry
- Sediment mobilization, and consequent changes in microhabitat will cause significant changes in the composition and abundance of benthic invertebrate communities

COASTAL RELIEF MODEL: FRYING PAN SHOALS REGION OF THE SOUTH ATLANTIC BIGHT

Bathymetry for Frying Pan Shoals Region of the SAB

"23 Mile Rock" Side Scan Mosaic

Upper reef hardbottom

Moored instrument package

Fine-grained sand flats

Reef ledge

Coarse-grained sands 100m

GEOLOGY

(Riggs et al., 1998)

Sidescan Sonar Mosaic

Coarse gravelly sand with dunes

100m

Fine-grain sand flat

FRAME DESIGN

SAMPLING DESIGN

ADCP continuous 5 minute averages PCADP and OBS: 1 Hz for 17 min every 2 hours Retrieved & Redeployed every 4-6 weeks

OBS MEASUREMENTS

SEABED ELEVATION CHANGES

SEABED ELEVATION CHANGES

SUMMARY

• Small northeaster storms with winds upwards of 30 knots for 48 hours can mobilize the upper 4-6 cm of the seabed at mid continental shelf depths (30m).

• Northeast winds of 30 knots for 36 hours showed little sediment mobilization at 30m depth.

 Strong southerly winds of 35-40 knots for 12 hours suspended little sediment and brought sand into reef area.

CONCLUSIONS

• Although waves and currents respond rapidly to local winds, sediment transport processes depend strongly on wind duration.

 Geologic disturbances (Northeaster storms) directly impact mid continental shelf benthic communities near hardbottoms.