Hydrography and Bottom Boundary Layer Dynamics: Influence on Inner Shelf Sediment Mobility, Long Bay, NC

Luke A. Davis
Thesis Defense
December 8, 2006

Background

- The NC shelf is 'sediment-starved' from limited sediment inputs
- The region is frequently affected by storms
- Storms cause shoreline erosion, creating a demand for quality renourishment sand
- So, understanding physical processes that mobilize sediment during storms is critical

Study Rationale

- Several studies on storm processes for the NC shelf, but these occurred in Onslow Bay
- No study has linked physical process to sediment transport in northern Long Bay
- Data critical to developing:
 - improved models for predicting sediment transport
 - management strategies for offshore sand resources and commercial fisheries

Goal

To identify and describe the physical mechanisms and bottom boundary layer dynamics during two coastal storms that mobilized sediment on the inner shelf of Long Bay, NC

Objectives

 To compare the spatial and temporal variability of the hydrography and sediment response in Long Bay during the autumn of 2005

 To apply a bottom boundary layer model to quantify nearshore conditions and sediment mobility associated with the passage of 2 different storm types.

Offshore Geology

Sediments

Instrumentation

2 Acoustic Doppler Current Profilers

NDBC Buoy 41013

Data Analysis

 Data were used to create time series plots in MATLAB to describe autumn hydrography

 Generate time series of bottom boundary layer parameters and profiles using a bottom boundary layer model during 2 events

Part 1: Autumn Hydrography

Summary

Wind velocity, current magnitudes, wave heights, and ABS increased during events

 Current magnitude and wave height at LB3M exceeded those at LB2M

During storms, current direction shifts to a more along-shelf direction

The Bottom Boundary Layer

Bottom Boundary Layer Model

Transport= Velocity x Conc.

Event Descriptions

- Ophelia
 - Category 1 Hurricane
 - 8th Hurricane in 2005

- November Event
 - 2 autumn frontal systems
 - Class 1 Storm

LB2M: Hurricane Ophelia

+ On / E - Off / W

LB2M: November Event

+ On / E - Off / W

Effect of storm type at LB2M

- Along-shelf currents exceeded across-shelf currents for both events
- Along-shelf currents were directed eastward during both events
- ABS increased with U_b and U_{*cw}
- Transport in the bbl during the peak of theNovember event was 2-4 times greater than Hurricane Ophelia

LB3M: Hurricane Ophelia

+ On / E - Off / W

LB3M: November Event

+ On / E - Off / W

Effect of storm type at LB3M

- Along-shelf currents exceeded across-shelf currents for both events
- Along-shelf currents were directed in opposite directions during each event
- ABS increased with U_b and U_{*cw}
- Transport in the bbl during the peak of the November event was 1.5 times greater than Hurricane Ophelia

How did sediment transport vary spatially in response to storms?

LB2M: Hurricane Ophelia

LB3M: Hurricane Ophelia

LB2M: November Event

LB3M: November Event

Key factors in influencing sediment response to storm passage:

- 1. Storm track and shoreline orientation
 - Influences wind field, wind-driven currents, and waves

 Key factors in influencing sediment response to storm passage:

2. Sediment heterogeneity

Key factors in influencing sediment response to storm passage:

- 3. Storm type and frequency
 - Extratropical storms are 30-40 times more frequent than tropical systems
 - Influence on transport is substantial
 - November event transported more sediments than Ophelia

- Influence on sediment distribution:
 - 1. Net eastward along-shelf transport during storms
 - Storage of fine sands in shoals
 - 2. Majority of offshore transport associated with the November event
 - Implications for offshore movement renourishment material

Conclusions

- Along-shelf transport was greater than across-shelf transport at both sites and was primarily eastward.
- Higher waves, elevated wind-driven currents, and smaller grain size resulted in an order of magnitude more transport at LB3M than LB2M during both events.
- Transport during the peak of the November event exceeded Ophelia by 20-50%.

Conclusions

- Extratropical storms may have a greater net influence on sediment transport than hurricanes because of higher frequency.
- Due to sediment distribution and water depths, these results are very site specific.

Acknowledgements

Funded by:

Coastal Ocean Research and Monitoring Program-NOAA Department of Geography and Geology, Graduate School, College of Arts and Sciences at UNCW.

Committee:

Lynn Leonard, Mike Benedetti, Fred Bingham, and Gregg Snedden

Friends and co-workers:

Ansley Wren, Jay Souza, Dave Wells, Steve Hall, Dan Kennedy, Alex Croft, Kassy Rodriguez, Sara Althof, Jeff Marshall, Cathy Morris, Boyce Steiner, Xiaoyan Qi, Larry Cahoon, Mike Mallin, & Pranoti Asher for all their help on the project.

LB2M Boxcore

Coarse layer

5-10 cm

Fine layer

20-25 cm

Example

- Summary for transport
- Mostly alongshore for all events, both sites mostly to east
- More transport during tropical storm at both sites
- More transport at LB3m (order of magnitude)

Study Limitations

- Site specific:
 - Spatial heterogeneity of sediments
 - Horizontal and vertical
 - Complex shoreline configuration
- Most applicable to shoreface (depths,Longshore)
- Small storm events (can't extrapolate to larger events)

Background

Sediment Mobility

- Coastal storms:
 - Influence
 - Туре
 - Frequency